

HIGH PERFORMANCE METALS FOR RACING APPLICATIONS

voestalpine BÖHLER Edelstahl GmbH & Co KG www.voestalpine.com/bohler-edelstahl

SPECIAL MATERIALS FOR WINNERS

FASTER, LIGHTER, STRONGER -

terms of our time which must be taken literally, especially in the racing industry. Fulfilling these requirements demands everything of materials. BÖHLER provides the materials that racing engineers need – in the grade and dimension they want.

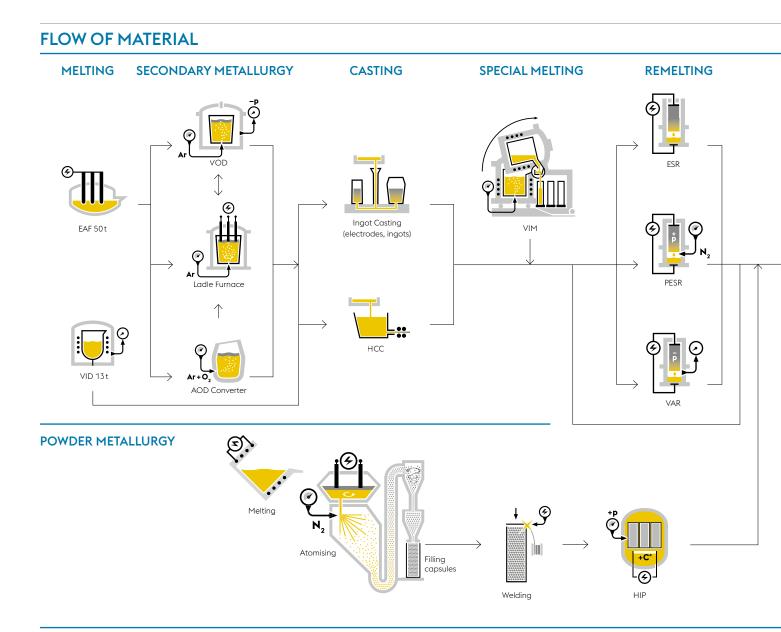
Each and every step of production – from melting to delivery – is in our own hands and means the highest, most consistent quality for you. This is why BÖHLER is one of the most reliable partners for the racing industry.

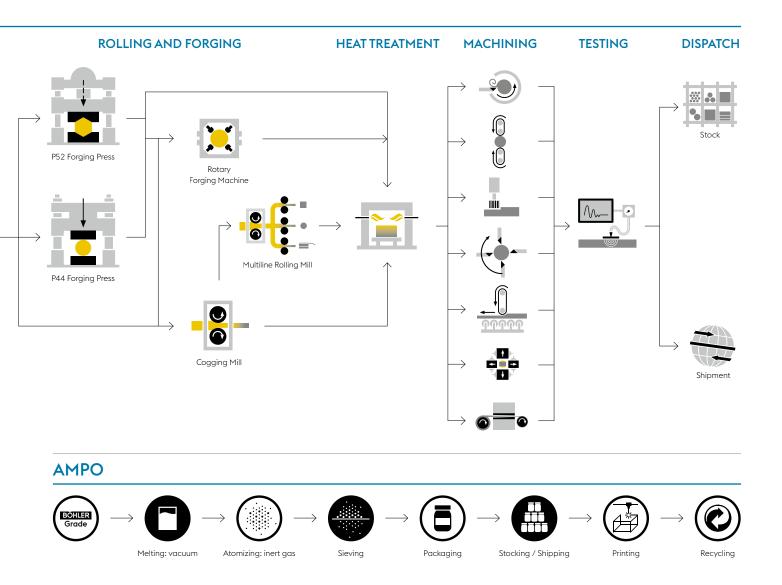
No limits, high performance materials for

- » Formula 1
- » Indycar Series
- » DTM
- » CART
- » Rally Cars
- » Motor Cycles

Applications

- » Gears
- » Crankshafts
- » Driveshafts
- » Bearings
- » Conrods
- » Camshafts
- » Differentials





With the UNLIMITED series BÖHLER offers optimised as well as newly developed material solutions designed for demanding Racing applications. One example would be our BÖHLER W460 UNLIMITED which is optimised to an outstanding fatigue strength and balanced mechanical properties.

Find out more details about our UNLIMITED portfolio within this brochure (Page 6) or contact one of our material experts.

TRENDSETTING TECHNOLOGIES FOR HIGHEST METALLURGICAL PERFORMANCE

BÖHLER RACING APPLICATIONS

5

THE QUALITY OF YOUR COMPONENTS STARTS HERE

A wide variety of possibilities when it comes to the machining and finishing of long products allows us to dedicate ourselves to customer requirements individually and rapidly in the BÖHLER service tradition.

Rolled bar steel is put through a heat treatment and machined, finished and tested according to customer specifications.

BÖHLER endeavours to fulfil every customer request regarding surface treatment: bar steel, round-peeled, peeled and polished, continuously ground or turned; machined at both ends upon request; bar steel, flat milled and cut to large-scale flat dimensions. In the BÖHLER tolerance range you require.


For example:

IBO ECOMAX ECOBLANK

ECOFINISH BRIGHT STEEL bar steel, peeled bright steel, peeled and polished, decarb-free bright steel, band ground ground and polished

BARS rolled

12.5 - 150	mm
15 - 150	mm
width	thickness
15 - 60	mm 5 – 41 mm
60 - 200	mm 5 – 86 mm
100 - 300	mm 15 – 80 mm
	15 - 150 width 15 - 60 60 - 200

ROLLED WIRE

rolled:	dia.	5.0	-	13.5 mm
drawn:	dia.	1.0	-	12.0 mm
precision	n shap	ed:		
r	ound	1	-	28 mm
	flat	0.5	-	40 mm ²
	nut	0.5		

BARS forged

round, square: 100 – 1200 mm flat: width thickness 1600 1000 mm maximum Ratio width/thickness maximum 10:1

BARS pre-machined

IBO ECOMAX12.5 – 425 mm (on request up to 900 mm)

A WIDE RANGE OF GRADES

BÖHLER grade	Market grade	Melting route	AMS	BS	Others	Chemical composition in %											
						С	Si	Mn	Cr	Mo	Ni	V	W	Co	Ti	Al	Others
HEAT TREAT	ABLE STEE	LS															
BÖHLER V124SC	4340	(P)ESR-VMR	6414	-	1.6944 ~ 40NiCrMo6	0.42	0.30	0.80	0.85	0.30	1.90	0.08	-	-	-	0.03	-
BÖHLER V132	300M	VMR	6257 6419	S155	SAE 4340M	0.42	1.65	0.80	0.80	0.40	1.80	0.08	-	-	-	-	-
BÖHLER V145	30CDN8	Airmelted	-	-	1.6604 30CrNiMo8	0.30	0.30	0.50	2.00	0.35	2.00	-	-	-	-	-	-
BÖHLER V180	-	VMR	-	-	-	0.41	2.70	0.70	0.85	0.45	1.80	0.21	-	-	-	-	-
BÖHLER V358	E40CDV12	(P)ESR-VMR	-	S132	1.8523	0.41	0.28	0.65	3.35	0.95	-	0.20	-	-	-	-	-
BÖHLER V361	E32CDV13	(P)ESR-VMR	6481	-	1.7765	0.33	0.28	0.50	3.00	1.00	-	0.25	-	-	0.033	-	-
BÖHLER M201	-	Airmelted	-	-	1.2311	0.41	0.30	1.50	2.00	0.20	-	-	-	-	-	-	-
BÖHLER M238	-	Airmelted	-	-	1.2738	0.38	0.30	1.50	2.00	0.20	1.10	-	-	-	-	-	-
BÖHLER M268	-	VMR	-	-	1.2738	0.38	0.30	1.50	-	-	-	-	-	-	-	-	-
BÖHLER W360	_	(P)ESR	-	-	-	0.50	0.20	0.25	4.50	3.00	-	0.60	-	-	-	-	-
BÖHLER W460	-	VMR	-	-	-	0.50	0.20	0.45	4.55	3.00	-	0.75	-	-	-	-	-
BÖHLER W400	-	VMR	~ H11	~ BH11	-	0.37	0.20	0.30	5.00	1.30	-	0.50	-	-	-	-	-
BÖHLER K600	-	Airmelted	-	-	1.2767	0.48	0.25	0.40	1.30	0.25	4.00	-	-	-	-	-	-
CASE CARBU	RISING S	TEELS															
BÖHLER E108	-	Airmelted- (P)ESR-VMR	-	S156	1.6722	0.17	0.28	0.80	0.70	0.25	4.10	-	-	-	-	-	-
BÖHLER M100	-	Airmelted	-	-	20MnCr5	0.20	0.28	1.20	1.10	-	-	-	-	-	-	-	-
BÖHLER M121	-	(P)ESR	-	-	EN36C	0.14	0.28	0.55	0.90	0.13	3.15	-	-	-	-	-	-
BÖHLER M130	-	Airmelted	-	-	EN39	0.19	0.23	0.30	1.25	0.20	4.05	-	-	-	-	-	-
PH GRADES	(STAINLES	SS STEELS)														
BÖHLER N700	17-4 PH	Airmelted- (P)ESR-VMR	5643 5622	-	1.4542 1.4548	0.04	0.25	0.40	15.28	-	4.50	-	-	-	-	-	Cu: 3.25 Nb: 0.30
BÖHLER N701	15-5 PH	Airmelted- (P)ESR	5659	-	1.4545	0.035	0.28	0.60	14.88	-	5.15	-	-	-	-	-	Cu: 3.30 Nb: 0.30
BÖHLER N709	13-8 Mo	VMR	5629	-	1.4534	0.03	-	-	12.45	2.18	8.15	-	-	-	-	1.06	-

BÖHLER grade Mo	arket grade	Melting route	AMS	BS	Others	Chemical composition in %											
						С	Si	Mn	Cr	Mo	Ni	V	W	Co	Ti	Al	Others
BEARING STEE	LS																
BÖHLER N360 X3	60	(P)ESR	5898	-	1.4108 X30CrMoN15-1	0.32	0.55	0.45	15.00	1.03	-	0.045	-	-	-	-	-
BÖHLER N695 44	-0C	Airmelted- VMR	5618 5630	-	1.3544 X105CrMo17 S102CrMo17	1.05	0.40	0.40	16.70	0.50	-	-	-	-	-	-	-
BÖHLER R250 MS	50	VMR	6491	-	~ 1.3551	0.83	0.18	0.28	4.13	4.30	-	1.05	-	-	-	-	-
BÖHLER R350 MS	50 Nil	VMR	6278	-	-	0.14	0.18	0.28	4.15	4.25	3.50	1.23	-	-	-	-	-
BÖHLER V124SC 43	40	(P)ESR-VMR	6414	-	1.6944 ~ 40NiCrMo6 EN24 VAR	0.42	0.30	0.80	0.85	0.30	1.90	0.08	-	-	-	0.03	-
MARAGING STE	EELS																
BÖHLER V720 Mo	araging 300	VMR	6514	-	1.6354	≤ 0.005		≤0.05	-	5.00	18.50	-	-	8.80	0.70	0.10	-
BÖHLER V723 Mo	araging 250	VMR	6512	S162	1.6359	-	-	-	-	4.90	-	-	-	7.80	0.40	0.13	-
PM PRODUCTIO	0 N																
BÖHLER K490 - MICROCLEFIN'		-	-	-	-	1.40	-	-	6.40	1.50	-	3.70	3.50	-	-	-	+ Nb
BÖHLER M390 - MICROCLEFIN		-	-	-	-	1.91	0.60	0.30	20.0	1.00	-	4.00	0.60	-	-	-	N: 0.24
BÖHLER S290 - MICROCLEFIN		-	-	-	-	2.00	-	-	3.80	2.50	-	5.10	14.30	11.00	-	-	-
BÖHLER S390 - MICROCLEFIN		_	-	-	-	1.64	-	-	3.80	2.00	-	4.80	10.40	8.00	-	-	-
BÖHLER S590 - MICROCLEFIN		-	-	-	-	1.29	-	-	4.20	5.00	-	3.00	6.30	8.40	-	-	-
BÖHLER S690 -		-	-	-	-	1.35	-	-	4.10	5.00	-	4.10	5.90	-	-	-	-
BÖHLER \$790 - MIGROLELEEIN		-	-	-	-	1.29	-	-	4.20	5.00	-	3.00	6.30	-	-	-	-
BÖHLER grade Ma		Melting route	AMS	Others	Chemical co		d 1	24									

Market grade	Melting route	AMS	MS Others	thers Chemical composition in %													
				С	Si	Mn	Cr	Mo	Ni	V	W	Со	Ti	Al	Nb	Cu	Others
YS (NI/FE-	BASE)																
Alloy 718	VMR	5662 5663	2.4668	0.08	0.35	0.35	17- 21	2.8- 3.3	50- 55	-	-	1.0			4.75- 5.5	0.3	P: 0.015 S: 0.015 Fe: Rem B: 0.006 Pb: 5ppm Bi: 0.3 ppm Se: 3ppm
Alloy 625	VMR	5666	2.4856 N06625	0.045	5 -	-	15.00) –	74.00) –	-	-	2.40	1.23	0.95		
A286	(P)ESR	5731 5732	Z6NCZ25 1.4933 1.4944	≤0.06	5 –	-	21.00	8.50	63.90) –	-	≤1.00	≤0.04	4 0.18	3.40	<3.00	
	YS (NI/FE) Alloy 718	Y S (NI/FE-BASE) Alloy 718 VMR	Y S (NI/FE-BASE) Alloy 718 VMR 5662 Alloy 625 VMR 5666 Alloy 625 VMR 5666	Y S (NI/FE-BASE) Alloy 718 VMR 5662 2.4668 5663 2.4668 5663 2.4668 Alloy 625 VMR 5666 2.4856 N06625 Image: Alloy 625 VMR 5666	C Y S (NI/FE-BASE) Alloy 718 VMR 5662 2.4668 0.08 5663 0.045 Alloy 625 VMR 5666 2.4856 0.045 N06625 0.045 N06625 ≤ 0.045 A286 (P)ESR 5731 Z6NCZ25 ≤0.045 5732 1.4933 ≤0.045	C Si Y S (NI/FE-BASE)	C Si Mn Y S (NI/FE-BASE)	C Si Mn Cr Y S (NI/FE-BASE)	C Si Mn Cr Mo Y S (NI/FE-BASE) C Si Mn Cr Mo Alloy 718 VMR 5662 2.4668 0.08 0.35 0.35 17- 2.8- Alloy 625 VMR 5666 2.4856 0.045 - 15.00 - Alloy 625 VMR 5666 26NC225 ≤0.06 - 21.00 8.50 A286 (P)ESR 5731 Z6NC225 ≤0.06 - 21.00 8.50	C Si Mn Cr Mo Ni Y S (NI/FE-BASE)	C Si Mn Cr Mo Ni V Y S (NI/FE-BASE) C Si Mn Cr Mo Ni V Alloy 718 VMR 5662 2.4668 0.08 0.35 0.35 17- 2.8- 50- - Alloy 625 VMR 5666 2.4856 0.045 - 15.00 - 74.00 - Alloy 625 VMR 5666 2.4856 0.045 - 15.00 - 74.00 - A286 (P)ESR 5731 Z6NCZ25 ≤0.06 - 21.00 8.50 63.90 -	C Si Mn Cr Mo Ni V W YS (NI/FE-BASE)	C Si Mn Cr Mo Ni V W Co Y S (NI/FE-BASE) $(NI/FE-BASE)$	C Si Mn Cr Mo Ni V W Co Ti Y S (NI/FE-BASE) - - - - 1.0 0.65- 5663 0.08 0.35 0.35 17- 21 2.8- 3.3 50- 55 - - 1.0 0.65- 1.15 Alloy 625 VMR 5666 2.4856 N06625 0.045 - 15.00 - 74.00 - - 2.40 Alloy 625 VMR 5666 2.4856 N06625 0.045 - 15.00 - 74.00 - - 2.40 A286 (P)ESR 5731 5732 26NCZ25 1.4933 ≤0.06 - 21.00 8.50 63.90 - ≤1.00 ≤0.04	C Si Mn Cr Mo Ni V W Co Ti Al Y S (NI/FE-BASE) Image: Alloy 718 VMR 5662 2.4668 0.08 0.35 0.35 17- 2.8- 50- - - 1.0 0.65- 0.2- Alloy 718 VMR 5666 2.4856 0.045 - 15.00 - 74.00 - - 2.40 1.23 Alloy 625 VMR 5666 2.4856 0.045 - 15.00 - 74.00 - - 2.40 1.23 A286 (P)ESR 5731 Z6NCZ25 ≤0.06 - 21.00 8.50 63.90 - ≤1.00 ≤0.04 0.18	C Si Mn Cr Mo Ni V W Co Ti All Nb Y S (NI/FE-BASE) - - 1.0 0.65- 0.2- 4.75- Alloy 718 VMR 5662 2.4668 0.08 0.35 0.35 17- 2.8- 50- - - 1.0 0.65- 0.2- 4.75- Alloy 625 VMR 5666 2.4856 0.045 - - 15.00 - 74.00 - - - 2.40 1.23 0.95 Alloy 625 VMR 5666 2.4856 0.045 - - 15.00 - 74.00 - - - 2.40 1.23 0.95 A286 (P)ESR 5731 Z6NCZ25 ≤0.06 - - 21.00 8.50 63.90 - - ≤1.00 ≤0.04 0.18 3.40	C Si Mn Cr Mo Ni V W Co Ti All Nb Cu Y S (N1/FE-BASE) Image: Alloy 718 VMR 5662 2.4668 0.08 0.35 0.35 17- 2.8- 50- - 1.0 0.65- 0.2- 4.75- 0.3 Alloy 718 VMR 5663 2.4668 0.08 0.35 0.35 17- 2.8- 50- - - 1.0 0.65- 0.2- 4.75- 0.3 Alloy 625 VMR 5666 2.4856 0.045 - - 15.00 - 74.00 - - - 2.40 1.23 0.95 A286 (P)ESR 5731 Z6NCZ25 <0.06 - - 21.00 8.50 63.90 - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < <t< td=""></t<>

BÖHLER **AMPO** POWDER TO PRINT YOUR DREAMS

We as BÖHLER offer powders with the right properties for every application and printing technology. In our global development and testing center we produce test objects with 3D printing in order to acquire experience and explore new application areas for additive manufacturing.

	nominally 15 to 45µm, 45 to 90µm, or according to customer requirements Titanium: 20 to 63 µm, or according to customer requirements											
BÖHLER AMPO grade	Particle size di D10 [µm]	stribution* D50 [μm]	D90 [µm]	Apparent density** [g/cm ³]								
BÖHLER E185 AMPO	18-24	29-35	42-50	≥ 3.5								
BÖHLER M789 AMPO	18-24	29-35	42-50	≥ 3.5								
BÖHLER W360	18-24	29-35	42-50	≥ 3.6								
BÖHLER N700 AMPO	18-24	29-35	42-50	≥ 3.4								
BÖHLER L718 AMPO	18-24	29-35	42-50	≥ 3.5								
BÖHLER Ti64Gd.5 AMPO	18-24	31-41	53-67	≥ 2.0								
BÖHLER Ti64Gd.23 AMPO	18-24	31-41	53-67	≥ 2.0								

* Measurement of the particle size distribution according to ISO 13322-2 (Dynamic image analysis methods);

** The apparent density measurement is based on ASTM B417 and ASTM B212 and relates to typical measured values.

The use of up-to-date measuring technology and investment in new methods is important to us.

Vacuum induction melting and atomization under inert gas ensure the highest possible metallurgical purity of the powder.

In our test laboratory, we rely on qualified and carefully trained staff.

BÖHLER E185	Patent per	nding									
Chemical	Element	с	Si	Mn	Cr	Ni	Мо	V		. .	
composition [wt. %]	Mass - %	0.19	0.22	0.30	0.95	1.25	0.20	0.15	Co-	free*	
BÖHLER M789 AMPO	Patent										
Chemical	Element	Element C Cr Mo Ni Ti Al									
composition [wt. %]	Mass - %	≤ 0.02	12.20	1.00	10.00	1.00	0.60			free*	
BÖHLER W360 AMPO	Patent										
Chemical	Element	С	Si	Mn	Cr	Мо	V	_	Co-	free*	
composition [wt. %]	Mass - %	0.50	0.20	0.25	4.50	3.00	0.55		Ni-f	ree**	
BÖHLER N700 AMPO	DIN 1.454	2 / 17-4PF	+ / UNS S17	400 (chem	istry of AM	S 5643 resp	ectively Al	MS 5622)			
Chemical	Element	С	Cr	Ni	Cu	Nb					
composition [wt. %]	Mass - %	0.04	16.25	4.00	4.00	0.34					
BÖHLER L718 AMPO	-		107718 (upc MS 5662 re			-)				
Chemical	Element	С	Cr	Мо	Ni	Ti	Al	Nb	В	Fe	
composition [wt. %]	Mass - %	0.04	19.00	3.05	52.50	0.90	0.50	5.13	0.004	Balance	
BÖHLER Ti64Gd.5 AMPO	3.7164 (3.7	7165) UNS	56400								
Chemical	Element	С	Ti	Al	V	Fe	0	Ν	Н	Y	
composition [wt. %]	Mass - %	≤ 0.08	> 87.00	6.13	4.00	≤ 0.30	≤ 0.20	≤ 0.05	≤ 0.02	≤ 0.01	
BÖHLER Ti64Gd.23 AMPO	3.7165 (3.7	7164) UNS	56407								
Chemical	Element	С	Ti	Al	V	Fe	0	N	Н	Y	
composition [wt. %]	Mass - %	≤ 0.08	> 87.00	6.00	4.00	≤ 0.25	≤ 0.13	≤ 0.05	≤ 0.01	≤ 0.01	
	Order qua	ntity	1	0 kg minimu	m					ontent ≤ 0.1%	
	Particle siz	**Ni-co	**Ni-content ≤ 0.1%								

YOU CAN TRUST OUR SPECIALISTS

YOU'VE GOT THE IDEAS AND WE'VE GOT THE SOLUTIONS. ANY PROBLEM THAT ARISES, ANY CUSTOMER REQUIREMENT AT HAND MEANS NEW ANSWERS TO BE FOUND, FOR OVER 100 YEARS NOW. THIS KNOW-HOW IS AVAILABLE TO YOU, WHETHER AS SUPPORT FOR MATERIALS OR AS APPLICATIONS. TECHNICAL CONSULTING IS OUR SUPREME DISCIPLINE AND YOU AS OUR PARTNER CAN CERTAINLY BENEFIT FROM IT.

Our services include:

On-going responsibility for quality

(from the inquiry to issuing the certificate) Technical interface between the customer

(sales, marketing, ...) and the production

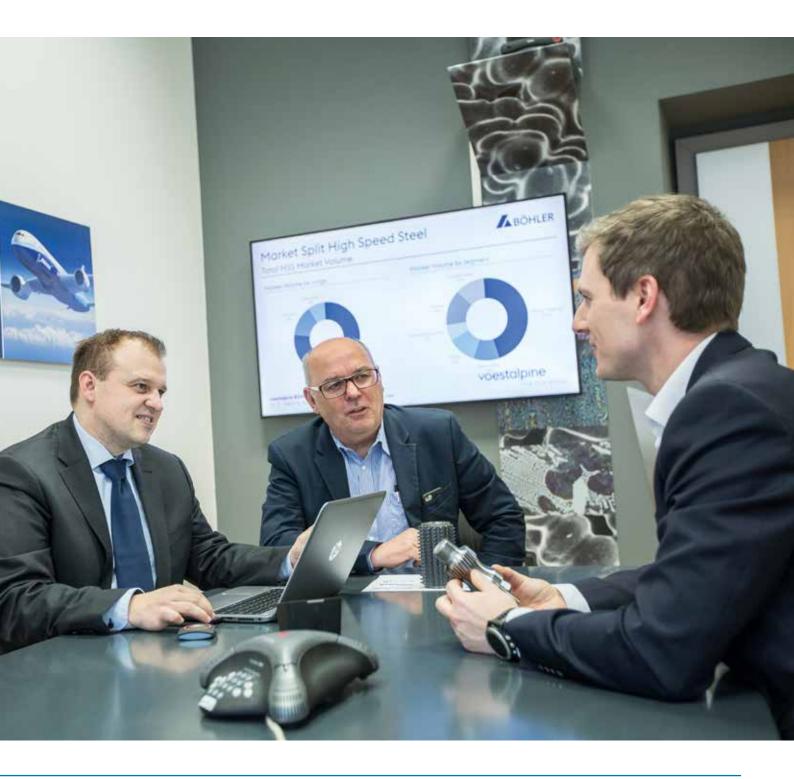
Technical request handling

Technical order processing/inspection/monitoring

Product certification (issuing certificates)

Product and process approvals/qualifications

Continuous product optimization throughout the entire production process


Technical customer advisory service/ applications engineering

Technical trainings

Process optimization and development

Central coordination of testing activities

FORMS OF SUPPLY AND AVAILABILITY

PROMPT AVAILABILITY

Having a professional partner is vital, especially in the field of power industry engineering. In order to be able to fulfill the demands of our customers in terms of time and quantity, we are able to offer special storage options at several locations.

Austria:

voestalpine BÖHLER Edelstahl GmbH & Co KG

Mariazeller Straße 25, 8605 Kapfenberg, Austria P. +43/3862/20-0 E. automotive@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

United Kingdom:

voestalpine High Performance Metals UK Ltd.

European Business Park, Taylors Lane, Oldbury B69 2BN P. +44(0)121 552 2575 E. ukinfo@voestalpine.com www.voestalpine.com/highperformancemetals/uk/en/

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. Measurement data are laboratory values and can deviate from practical analyses. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.

voestalpine BÖHLER Edelstahl GmbH & Co KG Mariazeller Straße 25 8605 Kapfenberg, Austria T. +43/50304/20-0 E. info@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

BW145En - 11.2022

